Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.361
Filtrar
1.
PeerJ ; 12: e17176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560479

RESUMO

The effects of nitrogen application or earthworms on soil respiration in the Huang-Huai-Hai Plain of China have received increasing attention. However, the response of soil carbon dioxide (CO2) emission to nitrogen application and earthworm addition is still unclear. A field experiment with nitrogen application frequency and earthworm addition was conducted in the Huang-Huai-Hai Plain. Results showed nitrogen application frequency had a significant effect on soil respiration, but neither earthworms nor their interaction with nitrogen application frequency were significant. Low-frequency nitrogen application (NL) significantly increased soil respiration by 25%, while high-frequency nitrogen application (NH), earthworm addition (E), earthworm and high-frequency nitrogen application (E*NH), and earthworm and low-frequency nitrogen application (E*NL) also increased soil respiration by 21%, 21%, 12%, and 11%, respectively. The main reason for the rise in soil respiration was alterations in the bacterial richness and keystone taxa (Myxococcales). The NH resulted in higher soil nitrogen levels compared to NL, but NL had the highest bacterial richness. The abundance of Corynebacteriales and Gammaproteobacteria were positively connected with the CO2 emissions, while Myxococcales, Thermoleophilia, and Verrucomicrobia were negatively correlated. Our findings indicate the ecological importance of bacterial communities in regulating the carbon cycle in the Huang-Huai-Hai Plain.


Assuntos
Myxococcales , Oligoquetos , Animais , Dióxido de Carbono , Soja , Nitrogênio/farmacologia , Solo , Produtos Agrícolas
2.
GM Crops Food ; 15(1): 118-129, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38564429

RESUMO

Soybean is one of the important oil crops and a major source of protein and lipids. Drought can cause severe soybean yields. Dehydrin protein (DHN) is a subfamily of LEA proteins that play an important role in plant responses to abiotic stresses. In this study, the soybean GmDHN9 gene was cloned and induced under a variety of abiotic stresses. Results showed that the GmDHN9 gene response was more pronounced under drought induction. Subcellular localization results indicated that the protein was localized in the cytoplasm. The role of transgenic Arabidopsis plants in drought stress response was further studied. Under drought stress, the germination rate, root length, chlorophyll, proline, relative water content, and antioxidant enzyme content of transgenic Arabidopsis thaliana transgenic genes were higher than those of wild-type plants, and transgenic plants contained less O2-, H2O2 and MDA contents. In short, the GmDHN9 gene can regulate the homeostasis of ROS and enhance the drought resistance of plants.


Assuntos
Arabidopsis , Arabidopsis/genética , Resistência à Seca , Soja/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Secas , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Arch Insect Biochem Physiol ; 115(4): e22107, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591567

RESUMO

RNA interference (RNAi)-based gene silencing is a feasible and sustainable technology for the management of hemipteran pests by double-stranded RNA involvement, including small-interfering RNA, microRNA, and Piwi-interacting RNA (piRNA) pathways, that may help to decrease the usage of chemical insecticides. However, only a few data are available on the somatic piRNAs and their biogenesis genes in Riptortus pedestris, which serves as a significant pest of soybean (Glycine max). In this study, two family members of the PIWI gene were identified and characterized in R. pedestris, containing Argonaute3 (RpAgo3) and Aubergine (RpAub) genes with conserved protein domains, and their clusters were validated by phylogenetic analysis. In addition, they were widely expressed in all developmental stages of the whole body of R. pedestris and had lower expression levels in R. pedestris guts under different rearing conditions based on previous transcriptome sequencing. Furthermore, abundant clean reads were filtered to a total number of 45,998 piRNAs with uridine bias at the first nucleotide (nt) position and 26-32 nt in length by mapping onto the reference genome of R. pedestris according to our previous whole-transcriptome sequencing. Finally, our data revealed that gut bacterial changes were significantly positively or negatively associated with differentially expressed piRNAs among the five comparison groups with Pearson correlation analysis. In conclusion, these findings paved new avenues for the application of RNAi-based biopesticides for broad-spectrum hemipteran pest control.


Assuntos
Heterópteros , RNA de Interação com Piwi , Animais , Filogenia , Heterópteros/genética , Heterópteros/metabolismo , Soja , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
PeerJ ; 12: e17007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584941

RESUMO

Soybean milk is a rich plant-based source of protein, and phenolic compounds. This study compared the nutritional value of soybean milk, flour, soy protein isolate (SPI) and evaluated the impact of prepared vitamin E/calcium salt/soy protein isolate nanoparticles (ECSPI-NPs) on fortification of developed soybean milk formulations. Results indicated that soybean flour protein content was 40.50 g/100 g, that fulfills 81% of the daily requirement (DV%), the unsaturated fatty acids (USFs), oleic and linoleic content was 21.98 and 56.7%, respectively, of total fatty acids content. In soybean milk, essential amino acids, threonine, leucine, lysine achieved 92.70, 90.81, 77.42% of amino acid scores (AAS) requirement values respectively. Ferulic acid was the main phenolic compound in soybean flour, milk and SPI (508.74, 13.28, 491.78 µg/g). Due to the moisture content of soybean milk (88.50%) against (7.10%) in soybean flour, the latest showed higher nutrients concentrations. The prepared calcium (20 mM/10 g SPI) and vitamin E (100 mg/g SPI) nanoparticles (ECSPI-NPs) exhibited that they were effectively synthesized under transmission electron microscope (TEM), stability in the zeta sizer analysis and safety up to IC50 value (202 ug/mL) on vero cell line. ECSPI-NPs fortification (NECM) enhanced significantly phenolic content (149.49 mg/mL), taste (6.10), texture (6.70) and consumer overall acceptance (6.54). Obtained results encourage the application of the prepared ECSPI-NPs for further functional foods applications.


Assuntos
Soja , Proteínas de Soja , Cálcio da Dieta/análise , Ácidos Graxos/análise , Leite/química , Proteínas de Soja/análise
5.
Theor Appl Genet ; 137(4): 93, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570354

RESUMO

KEY MESSAGE: Using the integrated approach in the present study, we identified eleven significant SNPs, seven stable QTLs and 20 candidate genes associated with branch number in soybean. Branch number is a key yield-related quantitative trait that directly affects the number of pods and seeds per soybean plant. In this study, an integrated approach with a genome-wide association study (GWAS) and haplotype and candidate gene analyses was used to determine the detailed genetic basis of branch number across a diverse set of soybean accessions. The GWAS revealed a total of eleven SNPs significantly associated with branch number across three environments using the five GWAS models. Based on the consistency of the SNP detection in multiple GWAS models and environments, seven genomic regions within the physical distance of ± 202.4 kb were delineated as stable QTLs. Of these QTLs, six QTLs were novel, viz., qBN7, qBN13, qBN16, qBN18, qBN19 and qBN20, whereas the remaining one, viz., qBN12, has been previously reported. Moreover, 11 haplotype blocks, viz., Hap4, Hap7, Hap12, Hap13A, Hap13B, Hap16, Hap17, Hap18, Hap19A, Hap19B and Hap20, were identified on nine different chromosomes. Haplotype allele number across the identified haplotype blocks varies from two to five, and different branch number phenotype is regulated by these alleles ranging from the lowest to highest through intermediate branching. Furthermore, 20 genes were identified underlying the genomic region of ± 202.4 kb of the identified SNPs as putative candidates; and six of them showed significant differential expression patterns among the soybean cultivars possessing contrasting branch number, which might be the potential candidates regulating branch number in soybean. The findings of this study can assist the soybean breeding programs for developing cultivars with desirable branch numbers.


Assuntos
Estudo de Associação Genômica Ampla , Soja , Mapeamento Cromossômico , Haplótipos , Soja/genética , Melhoramento Vegetal , Fenótipo , Sementes/genética , Polimorfismo de Nucleotídeo Único
6.
Plant Cell Rep ; 43(5): 116, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622229

RESUMO

KEY MESSAGE: The study on the GmDWF1-deficient mutant dwf1 showed that GmDWF1 plays a crucial role in determining soybean plant height and yield by influencing the biosynthesis of brassinosteroids. Soybean has not adopted the Green Revolution, such as reduced height for increased planting density, which have proven beneficial for cereal crops. Our research identified the soybean genes GmDWF1a and GmDWF1b, homologous to Arabidopsis AtDWF1, and found that they are widely expressed, especially in leaves, and linked to the cellular transport system, predominantly within the endoplasmic reticulum and intracellular vesicles. These genes are essential for the synthesis of brassinosteroids (BR). Single mutants of GmDWF1a and GmDWF1b, as well as double mutants of both genes generated through CRISPR/Cas9 genome editing, exhibit a dwarf phenotype. The single-gene mutant exhibits moderate dwarfism, while the double mutant shows more pronounced dwarfism. Despite the reduced stature, all types of mutants preserve their node count. Notably, field tests have shown that the single GmDWF1a mutant produced significantly more pods than wild-type plants. Spraying exogenous brassinolide (BL) can compensate for the loss in plant height induced by the decrease in endogenous BRs. Comparing transcriptome analyses of the GmDWF1a mutant and wild-type plants revealed a significant impact on the expression of many genes that influence soybean growth. Identifying the GmDWF1a and GmDWF1b genes could aid in the development of compact, densely planted soybean varieties, potentially boosting productivity.


Assuntos
Arabidopsis , Brassinosteroides , Brassinosteroides/metabolismo , Soja/genética , Sistemas CRISPR-Cas/genética , Mutação/genética , Arabidopsis/metabolismo , Edição de Genes , Regulação da Expressão Gênica de Plantas/genética
7.
Curr Microbiol ; 81(5): 129, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587647

RESUMO

Arbuscular mycorrhizal (AM) fungi are being used as a new generation of biofertilizers to increase plant growth by improving plant nutrition and bio-protection. However, because of the obligatory nature of the plant host, large-scale multiplication of AM propagules is challenging, which limits its applicability. This study evaluates the ability of Burkholderia arboris to increase AM production in soybean mill waste and vermicompost amended by soil-sand mixture planted with sorghum as a host plant. The experiment was conducted in a nursery using a completely randomized design with four inoculation treatments (B. arboris, AM fungi, B. arboris + AM fungi, and control) under sterilized and unsterilized conditions. AM production was investigated microscopically (spore density and root colonization), and biochemically (AM-specific lipid biomarker, 16:1ω5cis derived from neutral lipid fatty acid (NLFA), and phospholipid fatty acid (PLFA) fractions from both soil and roots). Integrating B. arboris with AM fungi in organically amended pots was found to increase AM fungal production by 62.16 spores g-1 soil and root colonization by 80.85%. Biochemical parameters also increased with B. arboris inoculation: 5.49 nmol PLFA g-1 soil and 692.68 nmol PLFA g-1 root and 36.72 nmol NLFA g-1 soil and 3147.57 nmol NLFA g-1 root. Co-inoculation also increased glomalin-related soil protein and root biomass. Principal component analysis (PCA) further supported the higher contribution of B. arboris to AM fungi production under unsterilized conditions. In conclusion, inoculation of AM plant host seeds with B. arboris prior to sowing into organic potting mix could be a promising and cost-effective approach for increasing AM inoculum density for commercial production. Furthermore, efforts need to be made for up-scaling the AM production with different plant hosts and soil-substrate types.


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Sorghum , Areia , Solo , Soja , Grão Comestível , Ácidos Graxos , Fungos
8.
BMC Genomics ; 25(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565997

RESUMO

Food security is important for the ever-growing global population. Soybean, Glycine max (L.) Merr., is cultivated worldwide providing a key source of food, protein and oil. Hence, it is imperative to maintain or to increase its yield under different conditions including challenges caused by abiotic and biotic stresses. In recent years, the soybean pod-sucking stinkbug Riptortus pedestris has emerged as an important agricultural insect pest in East, South and Southeast Asia. Here, we present a genomics resource for R. pedestris including its genome assembly, messenger RNA (mRNA) and microRNA (miRNA) transcriptomes at different developmental stages and from different organs. As insect hormone biosynthesis genes (genes involved in metamorphosis) and their regulators such as miRNAs are potential targets for pest control, we analyzed the sesquiterpenoid (juvenile) and ecdysteroid (molting) hormone biosynthesis pathway genes including their miRNAs and relevant neuropeptides. Temporal gene expression changes of these insect hormone biosynthesis pathways were observed at different developmental stages. Similarly, a diet-specific response in gene expression was also observed in both head and salivary glands. Furthermore, we observed that microRNAs (bantam, miR-14, miR-316, and miR-263) of R. pedestris fed with different types of soybeans were differentially expressed in the salivary glands indicating a diet-specific response. Interestingly, the opposite arms of miR-281 (-5p and -3p), a miRNA involved in regulating development, were predicted to target Hmgs genes of R. pedestris and soybean, respectively. These observations among others highlight stinkbug's responses as a function of its interaction with soybean. In brief, the results of this study not only present salient findings that could be of potential use in pest management and mitigation but also provide an invaluable resource for R. pedestris as an insect model to facilitate studies on plant-pest interactions.


Assuntos
Heterópteros , Hormônios de Inseto , MicroRNAs , Animais , Soja/genética , Heterópteros/genética , Transcriptoma , MicroRNAs/genética , Perfilação da Expressão Gênica
9.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573061

RESUMO

Soybean (Glycine max (L.) Merr.) is an important agricultural crop around the world, and previous studies suggest that honey bees (Apis mellifera Linnaeus) can be a component for optimizing soybean production through pollination. Determining when bees are present in soybean fields is critical for assessing pollination activity and identifying periods when bees are absent so that bee-toxic pesticides may be applied. There are currently several methods for detecting pollinator activity, but these existing methods have substantial limitations, including the bias of pan trappings against large bees and the limited duration of observation possible using manual techniques. This study aimed to develop a new method for detecting honey bees in soybean fields using bioacoustics monitoring. Microphones were placed in soybean fields to record the audible wingbeats of foraging bees. Foraging activity was identified using the wingbeat frequency of honey bees (234 ±â€…14 Hz) through a combination of algorithmic and manual approaches. A total of 243 honey bees were detected over 10 days of recording in 4 soybean fields. Bee activity was significantly greater in blooming fields than in non-blooming fields. Temperature had no significant effect on bee activity, but bee activity differed significantly between soybean varieties, suggesting that soybean attractiveness to honey bees is heavily dependent on varietal characteristics. Refinement of bioacoustics methods, particularly through the incorporation of machine learning, could provide a practical tool for measuring the activity of honey bees and other flying insects in soybeans as well as other crops and ecosystems.


Assuntos
Himenópteros , Abelhas , Animais , Soja , Ecossistema , Produtos Agrícolas , Polinização
10.
Pestic Biochem Physiol ; 200: 105828, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582592

RESUMO

Soybean root rot is a worldwide soil-borne disease threatening soybean production, causing large losses in soybean yield and quality. Fusarium species are the most detrimental pathogens of soybean root rot worldwide, causing large production losses. Fusarium root rot has been frequently reported in Heilongjiang Province of China, but the predominant Fusarium species and the sensitivity of these pathogens to different fungicides remain unclear. In this study, diseased soybean roots were collected from 14 regions of Heilongjiang province in 2021 and 2022. A total of 144 isolates of Fusarium spp. were isolated and identified as seven distinct species: F. scirpi, F. oxysporum, F. graminearum, F. clavum, F. acuminatum, F. avenaceum, and F. sporotrichioide. F. scirpi and F. oxysporum had high separation frequency and strong pathogenicity. The sensitivity of Fusarium spp. to five different fungicides was determined. Mefentrifluconazole and fludioxonil showed good inhibitory effects, and the sensitivity to pydiflumetofen and phenamacril varied between Fusarium species. In particular, the activity of DMI fungicide prothioconazole was lower than that of mefentrifluconazole. Molecular docking showed that mefentrifluconazole mainly bound to CYP51C, but prothioconazole mainly bound to CYP51B. Furthermore, the sensitivity to prothioconazole only significantly decreased in ΔFgCYP51B mutant, and the sensitivity to mefentrifluconazole changed in ΔFgCYP51C and ΔFgCYP51A mutants. The results demonstrated that the predominant Fusarium species causing soybean root rot in Heilongjiang province were F. scirpi and F. oxysporum and DMI fungicides had differences in binding cavity due to the diversity of CYP51 proteins in Fusarium.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Fusarium/genética , Soja , Simulação de Acoplamento Molecular , China
11.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612522

RESUMO

The multidrug and toxic compound extrusion (MATE) proteins are coding by a secondary transporter gene family, and have been identified to participate in the modulation of organic acid exudation for aluminum (Al) resistance. The soybean variety Glycine max "Tamba" (TBS) exhibits high Al tolerance. The expression patterns of MATE genes in response to Al stress in TBS and their specific functions in the context of Al stress remain elusive. In this study, 124 MATE genes were identified from the soybean genome. The RNA-Seq results revealed significant upregulation of GmMATE13 and GmMATE75 in TBS upon exposure to high-dose Al3+ treatment and both genes demonstrated sequence homology to citrate transporters of other plants. Subcellular localization showed that both proteins were located in the cell membrane. Transgenic complementation experiments of Arabidopsis mutants, atmate, with GmMATE13 or GmMATE75 genes enhanced the Al tolerance of the plant due to citrate secretion. Taken together, this study identified GmMATE13 and GmMATE75 as citrate transporter genes in TBS, which could improve citrate secretion and enhance Al tolerance. Our findings provide genetic resources for the development of plant varieties that are resistant to Al toxicity.


Assuntos
Alumínio , Arabidopsis , Alumínio/toxicidade , Soja/genética , Arabidopsis/genética , Membrana Celular , Citratos
12.
J Hazard Mater ; 470: 134272, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613953

RESUMO

As a global emerging contaminant, microplastics (MPs) in water or soil can accumulate in vegetables, making them easily ingested through the diet. With excellent and tunable optical properties, carbon dots (CDs) are highly advantageous for tracing the entry process of MPs. Originally, long-wavelength CDs were synthesized from leaf-derived extracts, and fluorescent submicrometer plastics (CDs-MPs) with clean surfaces and concentrated particle sizes were obtained by soap-free microemulsion polymerization. The concentration of CDs-MPs exhibits a significant linear relationship with long-wavelength fluorescence intensity (λEx/λEm: 415/676 nm). Soybean sprouts (SBS), as an important type of food, are susceptible to contamination of MPs due to their soft epidermis and rapidly growing biomass. The results showed that CDs-MPs could be embedded into the cortex of SBS and enter the plant with cell division and elongation, leading to an increase in pore size on the cell wall surface. After entering the root system, CDs-MPs will pass through the Casparian strip and migrate in the vessels. Then, CDs-MPs enter the leaves through vascular bundles, and the distribution and size of epicuticular wax on leaves have changed. Furthermore, SBS showed resistant growth and increased levels of oxidative response when exposed to MPs/CDs-MPs. It is the first study to demonstrate the application of leaf-derived CDs in the prevention of MPs pollution by revealing the migration behavior of submicrometre plastics in SBS.


Assuntos
Carbono , Soja , Folhas de Planta , Pontos Quânticos , Folhas de Planta/química , Soja/química , Carbono/química , Pontos Quânticos/química , Microplásticos/toxicidade , Tamanho da Partícula , Raízes de Plantas , Plásticos/química , Fluorescência
13.
Mol Plant Pathol ; 25(4): e13452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619823

RESUMO

Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.


Assuntos
Fabaceae , Phytophthora , Fatores de Transcrição/genética , Soja/genética , Etilenos , Plantas Geneticamente Modificadas
14.
Ultrason Sonochem ; 105: 106864, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581796

RESUMO

The effects of ultrasound and different inulin (INU) concentrations (0, 10, 20, 30, and 40 mg/mL) on the structural and functional properties of soybean isolate protein (SPI)-INU complexes were hereby investigated. Fourier transform infrared spectroscopy showed that SPI was bound to INU via hydrogen bonding. All samples showed a decreasing and then increasing trend of α-helix content with increasing INU concentration. SPI-INU complexes by ultrasound with an INU concentration of 20 mg/mL (U-2) had the lowest content of α-helix, the highest content of random coils and the greatest flexibility, indicating the proteins were most tightly bound to INU in U-2. Both UV spectroscopy and intrinsic fluorescence spectroscopy indicated that it was hydrophobic interactions between INU and SPI. The addition of INU prevented the exposure of tryptophan and tyrosine residues to form a more compact tertiary structure compared to SPI alone, and ultrasound caused further unfolding of the structure of SPI. This indicated that the combined effect of ultrasound and INU concentration significantly altered the tertiary structure of SPI. SDS-PAGE and Native-PAGE displayed the formation of complexes through non-covalent interactions between SPI and INU. The ζ-potential and particle size of U-2 were minimized to as low as -34.94 mV and 110 nm, respectively. Additionally, the flexibility, free sulfhydryl groups, solubility, emulsifying and foaming properties of the samples were improved, with the best results for U-2, respectively 0.25, 3.51 µmoL/g, 55.51 %, 269.91 %, 25.90 %, 137.66 % and 136.33 %. Overall, this work provides a theoretical basis for improving the functional properties of plant proteins.


Assuntos
Inulina , Proteínas de Soja , Inulina/química , Proteínas de Soja/química , Ondas Ultrassônicas , Soja/química , Sonicação
15.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594617

RESUMO

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Assuntos
Bacillus thuringiensis , Mariposas , Praguicidas , Animais , Larva/genética , Larva/metabolismo , Soja/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Controle Biológico de Vetores/métodos , Mariposas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Cromossomos/metabolismo , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência a Inseticidas/genética
16.
Anal Chem ; 96(16): 6106-6111, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38594830

RESUMO

This study explores the innovative field of pulsed direct current arc-induced nanoelectrospray ionization mass spectrometry (DCAI-nano-ESI-MS), which utilizes a low-temperature direct current (DC) arc to induce ESI during MS analyses. By employing a 15 kV output voltage, the DCAI-nano-ESI source effectively identifies various biological molecules, including angiotensin II, bradykinin, cytochrome C, and soybean lecithin, showcasing impressive analyte signals and facilitating multicharge MS in positive- and negative-ion modes. Notably, results show that the oxidation of fatty acids using a DC arc produces [M + O - H]- ions, which aid in identifying the location of C═C bonds in unsaturated fatty acids and distinguishing between isomers based on diagnostic ions observed during collision-induced dissociation tandem MS. This study presents an approach for identifying the sn-1 and sn-2 positions in phosphatidylcholine using phosphatidylcholine and nitrate adduct ions, accurately determining phosphatidylcholine molecular configurations via the Paternò-Büchi reaction. With all the advantages above, DCAI-nano-ESI holds significant promise for future analytical and bioanalytical applications.


Assuntos
Nanotecnologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Citocromos c/química , Citocromos c/análise , Bradicinina/química , Bradicinina/análise , Angiotensina II/química , Angiotensina II/análise , Fosfatidilcolinas/química , Fosfatidilcolinas/análise , Soja/química
17.
Yi Chuan ; 46(4): 333-345, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632095

RESUMO

China has a high dependence on soybean imports, yield increase at a faster rate is an urgent problem that need to be solved at present. The application of heterosis is one of the effective ways to significantly increase crop yield. In recent years, the development of an intelligent male sterility system based on recessive nuclear sterile genes has provided a potential solution for rapidly harnessing the heterosis in soybean. However, research on male sterility genes in soybean has been lagged behind. Based on transcriptome data of soybean floral organs in our research group, a soybean stamen-preferentially expressed gene GmFLA22a was identified. It encodes a fasciclin-like arabinogalactan protein with the FAS1 domain, and subcellular localization studies revealed that it may play roles in the endoplasmic reticulum. Take advantage of the gene editing technology, the Gmfla22a mutant was generated in this study. However, there was a significant reduction in the seed-setting rate in the mutant plants at the reproductive growth stage. The pollen viability and germination rate of Gmfla22a mutant plants showed no apparent abnormalities. Histological staining demonstrated that the release of pollen grains in the mutant plants was delayed and incomplete, which may due to the locule wall thickening in the anther development. This could be the reason of the reduced seed-setting rate in Gmfla22a mutants. In summary, our study has preliminarily revealed that GmFLA22a may be involved in regulating soybean male fertility. It provides crucial genetic materials for further uncovering its molecular function and gene resources and theoretical basis for the utilization of heterosis in soybean.


Assuntos
Soja , Infertilidade Masculina , Masculino , Humanos , Plantas , Pólen/genética , Fertilidade , Infertilidade das Plantas/genética , Regulação da Expressão Gênica de Plantas
18.
Yi Chuan ; 46(3): 183-198, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632097

RESUMO

Artificial domestication provided the original motivation to the blooming of agriculture, following with the dramatic change of the genetic background of crops and livestock. According to theory and technology upgradation that contributing to the omics, we appreciate using the pan-genome instead of single reference genome for crop study. By comparison and integration of multiple genomes under the guidance of pan-genome theory, we can estimate the genomic information range of a species, leading to a global understanding of its genetic diversity. Combining pan-genome with large size chromosomal structural variations, high throughput population resequencing, and multi-omics data, we can profoundly study the genetic basis behind species traits we focus on. Soybean is one of the most important commercial crops over the world. It is also essential to our food security. Dissecting the formation of genetic diversity and the causal loci of key agricultural traits of soybean will make the modern soybean breeding more efficiently. In this review, we summarize the core idea of pan-genome and clarified the characteristics of construction strategies of pan-genome such as de novo/mapping assembly, iterative assembly and graph-based genome. Then we used the soybean pan-genome work as a case study to introduce the general way to study pan-genome. We highlighted the contribution of structural variation (SV) to the evolution/domestication of soybean and its value in understanding the genetic bases of agronomy traits. By those, we approved the value of graph-based pan-genome for data integration and SV calculation. Future research directions are also discussed for crop genomics and data science.


Assuntos
Genoma de Planta , Soja , Melhoramento Vegetal , Análise de Sequência de DNA , Genômica
19.
Trop Anim Health Prod ; 56(3): 115, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564111

RESUMO

A study was conducted to investigate the effect of replacing soybean meal (SBM) with maggot meal (MM) in growing rabbits' diets on their performance, nutrient digestibility, and carcass characteristics. In the 56 days feeding trials, sixty unsexed mixed breeds (New Zealand White x California) rabbits were allotted on a weight equalization basis into five dietary treatments where a standard corn-soybean meal based diet (0% of maggot meal) (MM0 diet) served as the while other diets had soybean meal replaced with MM at graded levels of 25, 50, 75 and 100% to give MM25, MM50, MM75, and MM100 diets respectively. Each treatment comprises of four replicates having three rabbits each (12 rabbits per treatment). Growth performance parameters were monitored and recorded weekly, carcass and organ weights evaluation was conducted on day 56. Nutrient digestibility commenced on the 56th day and lasted for 6 days. Feed and water were offered to the rabbits ad-libitum throughout the experimental period. All the performance parameters were significantly (P < 0.05) affected by MM inclusion in the diet of rabbits. Rabbits fed MM100 diet had the highest (P < 0.05) final weight (FW), total weight gain (TWG), and the best feed conversion ratio (FCR). The feed cost reduced (P < 0.05) with inclusion of MM in rabbit's diet. Feed cost per kg live weight (FC/LW) (1110.79 ₦/kg) and feed cost per kg weight gain (FC/WG) (1110.62 ₦/kg) was lowest (P < 0.05) for rabbits fed MM100 diet. Crude protein digestibility (CPD) (74.05%) was highest (P < 0.05) for rabbits fed the MM100 diet. The feeding of MM75 and MM100 diets to rabbits resulted in increased (P < 0.05) dry matter digestibility (DMD) (68.22 and 69.34%), nitrogen free extract digestibility (NFED) (65.52 and 65.22%) and neutral detergent fibre digestibility (NDFD) (70.05 and 69.58%). The highest (P < 0.05) nitrogen retained (NR) (2.10 g/d) occurred in rabbits fed the MM100 diet. The dressing percentage (DP) (71.01%) increased (P < 0.05) for rabbits fed the MM100 diet. The weight of forelimbs (10.48 and 10.45%) and hind limbs (17.42 and 18.07%) were highest (P < 0.05) for rabbits fed MM50 and MM100 diets respectively. Total gastrointestinal tract (GIT) and liver weight were highest (P < 0.05) for rabbits fed MM0 and MM100 diets respectively. It was concluded that MM can conveniently replace SBM in the diets of rabbits up to 100% for improved growth performance and increased nutrient digestibility. In addition, it can enhance DP and increase the carcass yield of rabbits.


Assuntos
Dieta , Farinha , Animais , Coelhos , Dieta/veterinária , Nutrientes , Soja , Larva , Aumento de Peso
20.
Trop Anim Health Prod ; 56(3): 121, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607462

RESUMO

The objective was to evaluate the effect of detoxified castor bean replacing soybean meal in the concentrate diet or as nitrogen organic fertilizer replacing urea on intake and nutrient digestibility, blood parameters and productive performance of sheep finished on irrigated Tamani grass pasture under continuous stocking and variable stocking rate. The treatments were two concentrate diets: standard (ground corn and soybean meal) and alternative diet (ground corn and detoxified castor bean cake), and two nitrogen fertilizers: chemical (urea) and organic (fresh castor bean cake). The randomized complete block design was used in a 2 × 2 factorial arrangement with four replications (500 m² paddocks). Four sheep (2 castrated males and 2 females) were distributed in each experimental unit, totaling 64 animals with an average initial weight of 19.42 ± 3.6 kg. No effects (P > 0.05) were observed on the variables inherent to the evaluation of the pasture. The average stocking rate (SR) among treatments was 85.50 sheep/ha, equivalent to 9.87 Animal Units (AU)/ha. The alternative diet presented lower dry matter digestibility (62.71%), with no negative effects on nutrient intake and kidney parameters. Animals fed the standard and alternative diet showed average daily gain of 103.75 and 86.76 g/day, respectively. A finishing period of up to 100 days is recommended for sheep selected for production systems in semi-arid regions managed intensively on pasture. Detoxified castor bean cake did not alter nutrient intake, liver and kidney parameters of the sheep and can be used in pasture-based sheep farming.


Assuntos
Fertilizantes , Semente de Rícino , Feminino , Masculino , Animais , Ovinos , Suplementos Nutricionais , Soja , Nitrogênio , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...